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Abstract In this paper, our main aim is to investigate the spectral properties of a
singular dissipative fourth order boundary value problem in lim-4 case with finite
transmission conditions. For this purpose we construct a suitable differential opera-
tor in an appropriate Hilbert space. After showing that this differential operator is a
dissipative operator we pass to the resolvent operator with an explicit form. Using
this resolvent operator and Krein’s theorem we prove a completeness theorem on the
boundary value transmission problem.
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1 Introduction

Boundary value problems generated by the ordinary differential equations and appro-
priate boundary conditions are important to understand many real world problems.
For example, oxygen diffusion in cells, heat and mass transfer within porous catalyst
particle, astrophysics, the study of stellor interiors, flow networks in biology, control
and optimization theory are closely related with boundary value problems [1–5]. In
particular, fourth order boundary value problems arise in the study of mathematical
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modeling of viscoelastic and inelastic flows, deformation of beams and plate deflection
theory [6–9] and therefore have attracted much attention in recent years.

As is known that differential equations can be considered on a single interval as
well as on multi-interval. In the secondary case, differential equations may be handled
with additional transmission conditions. By transmission conditions it is meant that
the solution of a differential equation satisfies additional conditions at an inner point of
the interval. In this case, differential equation may be handled on multi-interval. Such
boundary value transmission problems have many applications in scientific problems.
To be more precise we should note that many physical, chemical, biological phenom-
ena involving thresholds, bursting rhythm models in medicine, pharmacokinetics and
frequency modulated systems do exhibit transmission effects [10]. Therefore, the the-
ory of differential operators generated by a differential expression and boundary value
transmission conditions is a new and important branch of operator theory which has an
extensive physical, chemical and realistic mathematical model and has been emerging
as an important area of investigation.

In this paper we concern with the following fourth order differential equation

ϕ(4) −
(

q1(x)ϕ
(1)
)(1) + q0(x)ϕ = μϕ, (1.1)

defined on the union of the intervals Ik = (ck−1, ck) as I =⋃n+1
k=1 Ik .Hereϕ(r) denotes

the ordinary r -th derivative of ϕ and μ is a complex parameter, Basic assumptions on
the Eq. (1.1) and the intervals Ik are as follows:

(i) −∞ < c0 < c1 < . . . < cn+1 ≤ ∞,
(ii) cm,m = 0, n := 0, 1, . . . , n, are the regular points and cn+1 is the singular point

for (1.1) and,
(iii) q0 and q1 are real-valued, Lebesgue measurable and locally integrable functions

on all Ik, k = 1, n + 1.

We shall impose some boundary and transmission conditions at the end points of the
intervals Ik, k = 1, n + 1. Then we will use the operator theory. However, for this
purpose we shall construct a Hilbert space. Let L2(I ) be the Hilbert space consisting
of all squarely integrable functions ϕ such as

∫

I

|ϕ|2 dx <∞

and equipped with the usual inner product

(ϕ, χ) =
∫

I

ϕχdx .

Differential operators generated by the differential expressions and boundary value
transmission conditions may be selfadjoint or nonselfadjoint in some Hilbert spaces.
In particular, if the imaginary part of a nonselfadjoint operator acting on a Hilbert
space is nonnegative, then the operator is called dissipative. A direct result is that all

123



J Math Chem (2014) 52:2627–2644 2629

eigenvalues of a dissipative operator belong to the closed upper half-plane. However,
the spectral analysis of a dissipative operator needs to be completed. An important
problem is to describe the completeness of the root vectors (eigen- and associated
vectors) of a dissipative operator. This completeness result may be used in some
applications. For example, non-classical wavelets can be obtained from root vectors
for nonselfadjoint problems [11]. In the literature there are some theorems for getting
complete information for a dissipative operator. For example, Krein’s theorem is one
of the main theorems. It is better to note that some second order differential operators
have been investigated by Krein’s theorem [12,13]. On the other hand, in 2014 Zhang
and Sun have studied a singular fourth order dissipative operator with a transmission
point with the help of Livšic’s theorem [14]. In this paper using Krein’s theorem we
investigate a singular dissipative fourth order differential operator generated by (1.1)
and finite transmission conditions.

2 Basic solutions of the fourth order equation

In this section we shall introduce some basic solutions of the Eq. (1.1). However, at
first we shall introduce the quasi-derivatives ϕ[r ] of ϕ as follows (see [15])

ϕ[0] = ϕ,
ϕ[1] = ϕ(1),
ϕ[2] = ϕ(2),
ϕ[3] = q1ϕ

(1) − ϕ(3),
ϕ[4] = q0ϕ − (q1ϕ

(1))(1) + ϕ(4).

In this case (1.1) can be rewritten as

ϕ[4] = μϕ, x ∈ I.

Green’s formula may help us to impose the boundary condition at the singular point.
Therefore we shall describe a suitable set. Let D be a set in L2(I ) consisting of all
functions ϕ ∈ L2(I ) satisfying ϕ[r−1], r = 1, 4, are locally absolutely continuous on
all Ik, k = 1, n + 1, and ϕ[4] ∈ L2(I ). Hence for all ϕ, χ ∈ D, we obtain on Ik that

∫

Ik

{
ϕ[4]χ − ϕχ [4]

}
dx = [ϕ, χ ]ck−

ck−1+, (2.1)

where [ϕ, χ ]ck−
ck−1+ = [ϕ, χ ](ck−)− [ϕ, χ ](ck−1+) and

[ϕ, χ ] = ϕ[0]χ [3] − ϕ[3]χ [0] + ϕ[1]χ [2] − ϕ[2]χ [1]. (2.2)

Equation (2.2) is called the Lagrange form of the Eq. (1.1) and is equivalent to the
following

[ϕ, χ ] = q1

(
ϕχ(1) − ϕ(1)χ

)
+
(
ϕ(3)χ − ϕ(2)χ(1) + ϕ(1)χ(2) − ϕχ(3)

)
. (2.3)
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In the papers [16] and [17], Everitt called the Eq. (2.3 ) as bilinear concomitant of ϕ
and χ . It is clear from (2.1) and (2.2) [equivalently (2.3)] that if ϕ(x, μ) and χ(x, μ)
are the solutions of (1.1) for the same value of μ, then [ϕ, χ ] is independent of x and
depends only on μ on each interval Ik, k = 1, n + 1. Hence we have the following
Green’s formula ∫

I

{
ϕ[4]χ − ϕχ [4]

}
dx =

n+1∑
k=1

[ϕ, χ ]ck−
ck−1+. (2.4)

In particular, (2.1) or (2.4) implies that for arbitrary ϕ, χ ∈ D, at singular point
cn+1, the values [ϕ, χ ](cn+1−) and [ϕ, χ ](cn+1−) exist and are finite. Latter one also
follows from Green’s formula (2.4) [or (2.1 )]. In fact, it is sufficient to get the second
factor with its complex conjugate.

One of the useful tools for studying the spectral properties of a singular differential
operator is Weyl’s limit-point/circle theory. In fact, in 1910 Weyl proved that the nested
circles of the corresponding regular second order boundary value problems converge
either to a circle or a point in the corresponding m-plane [18]. These results imply that
at least one of the linearly independent solutions of a second order singular differential
equation defined on a semi-infinite interval must be squarely integrable. However, two
linearly independent solutons and combinations of them may be squarely integrable.
While primary case is known as limit-point case, secondary case is known as limit-
circle case for a second order differential operator. In 1946, Titchmarsh introduced
some results in the regular second order case and developted Weyl’s limit-point/circle
theory as introducing some properties of the corresponding m-functions [19]. In 1963,
Everitt constructed Weyl’s theory for the singular fourth order differential operator [17]
and using the connection between the dimension of the limit surface and the number
of squarely integrable solutions of a fourth order differential equation, Everitt proved
that at least two linearly independent solutions of a singular fourth order differential
equation must be squarely integrable on some semi-infinite intervals. Moreover, three
or four linearly independent solutions can be squarely integrable. These cases are called
lim-2, lim-3 and lim-4 cases, respectively, for the fourth order case. In particular, lim-2
case is known as Weyl’s limit-point case and lim-4 case is known as limit-circle case
for the fourth order differential operator.

We assume that lim-4 case holds for the Eq. (1.1) (see [20–24]).
Let

ϕr (x, μ) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

ϕr1(x, μ), x ∈ I1
ϕr2(x, μ), x ∈ I2
...

ϕr(n+1)(x, μ), x ∈ In+1

,

where r = 1, 4, be the solutions of ϕ[4] = μϕ, ϕ ∈ D, x ∈ I. We use the notation

Wx (ϕ1k, . . . , ϕ jk)(μ) = det

⎡
⎢⎣
ϕ1k(x, μ) · · · ϕ jk(x, μ)
...

...

ϕ
( j−1)
1k (x, μ) · · · ϕ( j−1)

jk (x, μ)

⎤
⎥⎦ , x ∈ Ik,
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where k = 1, n + 1, 1 ≤ j ≤ 4, to denote the Wronskian of the set
{ϕrk(x, μ) : 1 ≤ r ≤ j} of order j on each interval Ik . For j = 4, it is known that the
equality

Wx (ϕ1k, . . . , ϕ4k)(μ) = −[ϕ1k, ϕ2k](x, μ)[ϕ3k, ϕ4k](x, μ)
+[ϕ1k, ϕ3k](x, μ)[ϕ2k, ϕ4k](x, μ)
−[ϕ1k, ϕ4k](x, μ)[ϕ2k, ϕ3k](x, μ), (2.5)

holds on each Ik, k = 1, n + 1 (see [16]). Equation (2.5) implies that the Wronskian
of ϕ1k(x, μ), . . . , ϕ4k(x, μ) is independent of x and depends only on μ on each Ik,

k = 1, n + 1.
Now we shall describe the basic solutions of ϕ[4] = μϕ, x ∈ I. Let

θm(x, μ) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

θm1(x, μ), x ∈ I1
θm2(x, μ), x ∈ I2
...

θm(n+1)(x, μ), x ∈ In+1

, ψm(x, μ) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

ψm1(x, μ), x ∈ I1
ψm2(x, μ), x ∈ I2
...

ψm(n+1)(x, μ), x ∈ In+1

,

where m = 1, 2, be the solutions of (1.1) satisfying the conditions

θ
[0]
11 (c0+, μ) = α1, θ

[1]
11 (c0+, μ) = 0, θ

[2]
11 (c0+, μ) = 0, θ [3]11 (c0+, μ) = 1,

θ
[0]
21 (c0+, μ) = 0, θ

[1]
21 (c0+, μ) = α2, θ

[2]
21 (c0+, μ) = 1, θ [3]21 (c0+, μ) = 0,

ψ
[0]
11 (c0+, μ) = β1, ψ

[1]
11 (c0+, μ) = 0, ψ

[2]
11 (c0+, μ) = 0, ψ [3]11 (c0+, μ) = 1,

ψ
[0]
21 (c0+, μ) = 0, ψ

[1]
21 (c0+, μ) = β2, ψ

[2]
21 (c0+, μ) = 1, ψ [3]21 (c0+, μ) = 0,

and

θ
[0]
m(s+1)(cs+, μ) = 1

γ1s
θ
[0]
ms (cs−, μ), ψ [0]m(s+1)(cs+, μ) = 1

γ1s
ψ
[0]
ms (cs−, μ),

θ
[1]
m(s+1)(cs+, μ) = 1

γ2s
θ
[1]
ms (cs−, μ), ψ [1]m(s+1)(cs+, μ) = 1

γ2s
ψ
[1]
ms (cs−, μ),

θ
[2]
m(s+1)(cs+, μ) = 1

γ3s
θ
[2]
ms (cs−, μ), ψ [2]m(s+1)(cs+, μ) = 1

γ3s
ψ
[2]
ms (cs−, μ),

θ
[3]
m(s+1)(cs+, μ) = 1

γ4s
θ
[3]
ms (cs−, μ), ψ [3]m(s+1)(cs+, μ) = 1

γ4s
ψ
[3]
ms (cs−, μ),

where m = 1, 2, s = 1, n, αm, βm and γ js are real numbers satisfying α1 − β1 =
1, α2 − β2 = 1 and

ϒ(s) := γ1sγ4s = γ2sγ3s > 0.

Clearly the equalities

[θr1, ψm1]=δrm, [θr1, θm1] = 0, [ψr1, ψm1] = 0,

[θr2, ψm2] =
(
ϒ(1)

)−1
δrm, [θr2, θm2]=0, [ψr2, ψm2]=0,

...
...

...

[θr(n+1), ψm(n+1)]=
(

n∏
k=1

ϒ(k)

)−1

δrm, [θr(n+1), θm(n+1)]=0, [ψr(n+1), ψm(n+1)]=0,

(2.6)
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where 1 ≤ r,m ≤ 2 and δrm is the Kronecker delta, hold.
Let um(x) = θm(x, 0)(x ∈ I ), zm(x) = ψm(x, 0)(x ∈ I ), where m = 1, 2,

um(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

um1(x), x ∈ I1
um2(x), x ∈ I2
...

um(n+1)(x), x ∈ In+1

, zm(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

zm1(x), x ∈ I1
zm2(x), x ∈ I2
...

zm(n+1)(x), x ∈ In+1

,

umk(x) = θmk(x, 0)(x ∈ Ik) and zmk(x) = ψmk(x, 0)(x ∈ Ik), k = 1, n + 1. Then
one can say that {u1, u2, z1, z2} are the real solutions of ϕ[4] = 0, x ∈ I.

It is better to note that since lim-4 case holds for (1.1), the solutions θm, ψm, um,

zm, where m = 1, 2, and j = 1, 4, belong to L2(I ) and D. Therefore for arbitrary
ϕ ∈ D the values [ϕ, zm](cn+1−) and [ϕ, um](cn+1−) exist and are finite.

Let us defineωk(μ) := Wx (θ1k, θ2k, ψ1k, ψ2k)(μ) on each Ik, k = 1, n + 1.Using
(2.5) and (2.6) it is easy to see that

ω1(μ) = 1, ω2(μ) =
(
ϒ(1)

)−2
, · · · , ωn+1(μ) =

(
n∏

r=1

ϒ(r)

)−2

.

Let ωk := ωk(0). Then it is clear that ωk = Wx (u1k, u2k, z1k, z2k), x ∈ Ik, and

ω1 = 1, ω2 =
(
ϒ(1)

)−2
, · · · , ωn+1 =

(
n∏

r=1

ϒ(r)

)−2

.

3 Some identities and entire functions

Plücker’s identity is useful to study the singular problems and in the literature it is
obtained some identities on single intervals. However, it is necessary for us to obtain
some identities on multi-interval. For this purpose we use Fulton’s idea [25].

Let us consider the following association

y ←→ Y =

⎡
⎢⎢⎣

y[0]
y[1]
y[3]
y[2]

⎤
⎥⎥⎦ . (3.1)

Then we associate all ums and zms with Ums and Zms, respectively, as follows ums ←→
Ums and zms ←→ Zms, where m = 1, 2, s = 1, n + 1. We construct 4× 4 matrices
on each Is as

As = [U1s,U2s, Z1s, Z2s]

and let

J =
[

0 −I
I 0

]
,
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where I denotes the 2×2 unit matrix. It is clear that [y, w] = W t JY,wherew←→ W
and W t denotes the transpose of the matrix W. With a direct calculation we arrive at

At
1 J A1 = J (3.2)

and for k = 2, n + 1

At
k J Ak =

(
k−1∏
r=1

ϒ(r)

)−1

J. (3.3)

Define the transformation
SYs = A−1

s Ys, (3.4)

where Ys is associated with the solution y of (1.1) under (3.1 ) on Is, s = 1, n + 1.
Since As .(SYs) = Ys , we obtain from Cramer’s rule that

(SY1)(x) =

⎡
⎢⎢⎣
[y1, z11](x)
[y1, z21](x)
−[y1, u11](x)
−[y1, u21](x)

⎤
⎥⎥⎦ , (SYk)(x) =

(
k−1∏
r=1

ϒ(r)

)
⎡
⎢⎢⎣
[yk, z1k](x)
[yk, z2k](x)
−[yk, u1k](x)
−[yk, u2k](x)

⎤
⎥⎥⎦ .

(3.5)
Using (3.4) and (3.2) we find that

(SW1)
t J (SY1) = W t

1 JY1. (3.6)

Similarly from (3.4) and (3.3) we obtain for k = 2, n + 1 that

(SWk)
t J (SYk) =

(
k−1∏
r=1

ϒ(r)

)
W t

k JYk . (3.7)

Therefore using (3.5)–(3.7) we obtain for

ϕ(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ϕ1(x), x ∈ I1
ϕ2(x), x ∈ I2
...

ϕn+1(x), x ∈ In+1

, χ(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

χ1(x), x ∈ I1
χ2(x), x ∈ I2
...

χn+1(x), x ∈ In+1

∈ D

that

[ϕ1, χ1] = [ϕ1, u11][χ1, z11] − [ϕ1, z11][χ1, u11] + [ϕ1, u21][χ1, z21]
−[ϕ1, z21][χ1, u21], x ∈ I1

[y2, χ2] = ϒ(1) {[ϕ2, u12][χ2, z12] − [ϕ2, z12][χ2, u12] + [ϕ2, u21][χ2, z22]
−[ϕ2, z22][χ2, u22]} , x ∈ I2

...
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[ϕn+1, χn+1] =
n∏

r=1
ϒ(r)

{[ϕn+1, u1(n+1)][χn+1, z1(n+1)]
−[ϕn+1, z1(n+1)][χn+1, u1(n+1)] + [ϕn+1, u2(n+1)][χn+1, z2(n+1)]
−[ϕn+1, z2(n+1)][χn+1, u2(n+1)]

}
, x ∈ In+1.

(3.8)
With this identities we describe the growth of some entire functions. Therefore it

is better to remind some definition and results.
An entire function g(μ) is called of order≤ 1 and minimal type if for each ε > 0

the following inequality holds [26]

|g(μ)| ≤ Dεe
ε|μ|, μ ∈ C, (3.9)

where Dε is a constant. If an entire function g(μ) satisfies the inequality (3.9) for each
ε > 0, then

lim sup
|μ|→∞

1

|μ| log |g(μ)| ≤ 0. (3.10)

It is known that [27] if an entire function g(μ) satisfies (3.10) and g(0) = 1, then
g(μ) has the representation

g(μ) = lim
r→∞

∏

|μ j |≤r

(
1− μ

μ j

)
,

and the limit limr→∞
∑
|μ j |≤r 1/μ j exists and is finite. Then we have the following

theorem.

Theorem 3.1 The functions [θr (x, μ), zm(x)](cn+1−), [θr (x, μ), um(x)](cn+1−),
[ψr (x, μ), zm(x)](cn+1−) and [ψr (x, μ), um(x)](cn+1−), where 1 ≤ r,m ≤ 2, are
entire functions of μ of order ≤ 1 and are of minimal type.

Proof Consider the solution

ϕ(x, μ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ϕ1(x, μ), x ∈ I1
ϕ2(x, μ), x ∈ I2
...

ϕn+1(x, μ), x ∈ In+1

of the Eq. (1.1) satisfying the conditions ϕ[r−1](c0+, μ) = ξr , r = 1, 4, ξr ∈ C. It is
known that ϕ[r−1]

1 (x, μ) are entire functions of μ of order 1/4 on I1 (see [15]). Trans-

mission conditions Br
s (ϕ) = 0, r = 1, 4, s = 1, n, give that all ϕ[r−1]

l (x, μ), l =
2, n + 1, are entire functions of μ of order 1/4 on Ik, k = 1, n + 1, except the sin-
gular point cn+1. This implies that [ϕ(x, μ), zm(x)](a), [ϕ(x, μ), um(x)](a), where
cn ≤ a < cn+1, have the same property.
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Now consider the association y ←→ Y given in (3.1). Using the second eqution
given in (3.5) on In+1 in the equation (3.4) we find that

(
n∏

r=1

ϒ(r)

)
⎡
⎢⎢⎢⎢⎢⎢⎣

u[0]1(n+1) u[0]2(n+1) z[0]1(n+1) z[0]2(n+1)

u[1]1(n+1) u[1]2(n+1) z[1]1(n+1) z[1]2(n+1)

u[3]1(n+1) u[3]2(n+1) z[3]1(n+1) z[3]2(n+1)

u[2]1(n+1) u[2]2(n+1) z[2]1(n+1) z[2]2(n+1)

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣
[y, z1(n+1)]
[y, z2(n+1)]
−[y, u1(n+1)]
−[y, u2(n+1)]

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

y[0]
y[1]
y[3]
y[2]

⎤
⎥⎥⎦ .

Hence y has the representation on In+1

y =
(

n∏
r=1

ϒ(r)

){[y, z1(n+1)]u1(n+1) + [y, z2(n+1)]u2(n+1)

−[y, u1(n+1)]z1(n+1) − [y, u2(n+1)]z2(n+1)
}
.

(3.11)

Beside this, with a direct calculation we get on In+1 that

[y, z1(n+1)](1) = μyz1(n+1),

[y, z2(n+1)](1) = μyz2(n+1),

[y, u1(n+1)](1) = μyu1(n+1),

[y, u2(n+1)](1) = μyu2(n+1),

(3.12)

where [, ](1) denotes the ordinary derivative of [, ] with respect to the variable x .
Therefore substituting (3.11) in (3.12) we get on In+1 that

�(1)(x, μ) = μD(x)�(x, μ), (3.13)

where

�(x, μ) =

⎡
⎢⎢⎣
[y, z1(n+1)] (x, μ)
[y, z2(n+1)] (x, μ)
[y, u1(n+1)] (x, μ)
[y, u2(n+1)] (x, μ)

⎤
⎥⎥⎦

and

D(x) =
(

n∏
r=1

ϒ(r)

)

×

⎡
⎢⎢⎢⎣

u1(n+1)(x)z1(n+1)(x) u2(n+1)(x)z1(n+1)(x) −z2
1(n+1)(x) −z1(n+1)(x)z2(n+1)(x)

u1(n+1)(x)z2(n+1)(x) u2(n+1)(x)z2(n+1)(x) −z1(n+1)(x)z2(n+1)(x) −z2
2(n+1)(x)

u2
1(n+1)(x) u2(n+1)(x)u1(n+1)(x) −z1(n+1)(x)u1(n+1)(x) −z2(n+1)(x)u1(n+1)(x)

u1(n+1)(x)u2(n+1)(x) u2
2(n+1)(x) −z1(n+1)(x)u2(n+1)(x) −z2(n+1)(x)u2(n+1)(x)

⎤
⎥⎥⎥⎦.

Note that the elements of D(x) are integrable on In+1, since lim-4 case holds for (1.1).
Integrating both side in (3.13) from a to x (x ∈ In+1) we get that
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�(x, μ) = �(a, μ)+ μ
x∫

a

D(ζ )�(ζ, μ)dζ. (3.14)

We obtain from (3.14) that

‖�(x, μ)‖ ≤ ‖�(a, μ)‖ exp

⎛
⎝|μ|

x∫

a

‖D(ζ )‖ dζ

⎞
⎠ , x ∈ In+1. (3.15)

Using (3.15) we get on In+1 that

‖�(cn+1−, μ)−�(a, μ)‖ ≤ |μ|
⎛
⎝

cn+1∫

a

‖D(ζ )‖ dζ

⎞
⎠ exp

⎛
⎝|μ|

cn+1∫

cn

‖D(ζ )‖ dζ

⎞
⎠,

(3.16)
and

‖�(cn+1−, μ)‖ ≤ ‖�(a, μ)‖ exp

⎛
⎝|μ|

cn+1∫

a

‖D(ζ )‖ dζ

⎞
⎠. (3.17)

(3.16) implies that�(a, μ) converges uniformly inμ to�(cn+1, μ) in anyμ−compact
set as a→ cn+1 − . (3.17) implies that �(cn+1−, μ) is of not higher than first order.
Moreover from (3.17) we arrive at [y, zm(n+1)](cn+1−, μ), [y, um(n+1)](cn+1−, μ)
are of minimal type. Now taking y(x, μ) as θm(x, μ) and ψm(x, μ), m = 1, 2, we
complete the proof. �	

4 Dissipative operator

In this section we shall describe the eigenvalue problem with boundary value trans-
mission conditions. Then we will construct an operator associated with this problem
in the suitable Hilbert space.

Let us consider the following fourth order boundary value problem with finite
transmission conditions

ϕ[4] = μϕ, ϕ ∈ D, x ∈ I, (4.1)

B−1 (ϕ) := ϕ[0](c0+)− α1ϕ
[3](c0+) = 0, (4.2)

B−2 (ϕ) := ϕ[1](c0+)− α2ϕ
[2](c0+) = 0, (4.3)

Br
s (y) := ϕ[r−1](cs−)− γrsϕ

[r−1](cs+) = 0, (4.4)

B+1 (y) := [ϕ, z1](cn+1−)+ k1[ϕ, u1](cn+1−) = 0, (4.5)

B+2 (y) := [ϕ, z2](cn+1−)+ k2[ϕ, u2](cn+1−) = 0, (4.6)

where r = 1, 4, s = 1, n, α1, α2, γrs are real numbers as given in the Sect. 2, k1
and k2 are complex numbers such that k1 = 
k1 + i�k1 and k2 = 
k2 + i�k2 with
�k1,�k2 > 0.
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Let H = ⊕n+1
k=1 Hk, where Hk = L2(Ik), be the Hilbert space with the inner

product

〈ϕ, χ〉H =
[
(ϕ1, χ1)H1

(ϕ2, χ2)H2
· · · (ϕn+1, χn+1)Hn+1

]

×
[

1 ϒ(1) · · ·
n∏

r=1
ϒ(r)

]t

.

Here Hk are the Hilbert spaces with the usual inner products on Ik and [.]t denotes
the transpose of the matrix [.].

Consider the following set

D(L) =
⎧⎨
⎩ϕ ∈ H : ϕ[r−1] ∈ ACloc(Ik),

B−m (ϕ) = 0,
Br

s (ϕ) = 0,
B+m (ϕ) = 0,

ϕ[4] ∈ H
⎫⎬
⎭,

where r = 1, 4, m = 1, 2, s = 1, n, and ACloc(Ik) denotes the set consisting of all
locally absolutely continuous functions on Ik, k = 1, n + 1. We define the operator
L on D(L) as

Lϕ = ϕ[4], x ∈ I.

Hence the BVTP (4.1)–(4.6) can be introduced by the operator L in H as

Lϕ = μϕ, ϕ ∈ D(L), x ∈ I.

A direct consequence is the following theorem.

Theorem 4.1 L is dissipative in H.

Proof Consider an arbitrary element ϕ in D(L). Then a direct calculation gives that

〈Lϕ, ϕ〉H−〈ϕ, Lϕ〉H = [ϕ, ϕ]c1−
c0++ϒ(1)[ϕ, ϕ]c2−

c1++. . .+
n∏

r=1

ϒ(r)[ϕ, ϕ]cn+1−
cn+ . (4.7)

From the conditions B−1 (ϕ) = 0 and B−2 (ϕ) = 0 we get that

[ϕ, ϕ](c0+) = 0. (4.8)

Further since ϕ satisfies the conditions Br
s (ϕ) = 0, r = 1, 4, s = 1, n, we have

[ϕ, ϕ](cs−) = ϒ(s)[ϕ, ϕ](cs+), s = 1, n. (4.9)

On the other hand from the conditions B+1 (ϕ) = 0, B+2 (ϕ) = 0 and (3.8) we obtain

[ϕ, ϕ](cn+1−) =
(

n∏
r=1

ϒ(r)

)
2i�

{
k1 |[ϕ, u1](cn+1−)|2 + k2 |[ϕ, u2](cn+1−)|2

}
.

(4.10)
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Taking into account the conditions (4.7)–(4.10) one finds that

� 〈Lϕ, ϕ〉H =
(

n∏
r=1

ϒ(r)

)2

�
{

k1 |[ϕ, u1](cn+1−)|2 + k2 |[ϕ, u2](cn+1−)|2
}

(4.11)
and the proof is completed. �	

From Theorem 4.1 we obtain that all eigenvalues of L lie in the closed upper
half-plane.

Theorem 4.2 L has no real eigenvalue.

Proof Assume the contrary and let μ0 be an eigenvalue of L . Further let θ1(x, μ0)

be the eigenfunction of L associated with the real eigenvalue μ0. For the solution
ψ1(x, μ0) of (4.1) we know that

[θ1, ψ1](c0+) = 1. (4.12)

On the other side the equality

� 〈Lθ1, θ1〉H = �
(
μ0 ‖θ1‖2H

)
(4.13)

holds. Therefore from (4.11) and (4.13) we arrive at

[θ1, u1](cn+1−) = [θ1, u2](cn+1−) = 0. (4.14)

Using (4.14) in the conditions B+1 (θ1) = 0, B+2 (θ1) = 0 we obtain that

[θ1, z1](cn+1−) = [θ1, z2](cn+1−) = 0. (4.15)

Taking into account the constant of the bilinear concomitant of θ1(x, μ0) andψ1(x, μ0)

on each interval Ik, transmission conditions, (4.14) and (4.15) we get that

[θ1, ψ1](c0+) =
(

n∏
r=1

ϒ(r)

)
[θ1, ψ1](cn+1−)

=
(

n∏
r=1

ϒ(r)

)2

{[θ1, u1](cn+1−)[ψ1, z1](cn+1−)− [θ1, z1](cn+1−)[ψ1, u1](cn+1−)
+[θ1, u2](cn+1−)[ψ1, z2](cn+1−)− [θ1, z2](cn+1−)[ψ1, u2](cn+1−)} = 0.

(4.16)
However, (4.16) contradicts with (4.12). �	

Therefore all eigenvalues of L lie in the open upper half-plane. In particular, zero
is not an eigenvalue of L .

Now consider the function

�(μ) = det
[A�1(c0+, μ)+ B�2(cn+1−, μ)

]
, (4.17)
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where

�1(x, μ) =

⎡
⎢⎢⎢⎣

θ
[0]
1 (x, μ) θ [0]2 (x, μ) ψ [0]1 (x, μ) ψ [0]2 (x, μ)
θ
[1]
1 (x, μ) θ [1]2 (x, μ) ψ [1]1 (x, μ) ψ [1]2 (x, μ)
θ
[2]
1 (x, μ) θ [2]2 (x, μ) ψ [2]1 (x, μ) ψ [2]2 (x, μ)
θ
[3]
1 (x, μ) θ [3]2 (x, μ) ψ [3]1 (x, μ) ψ [3]2 (x, μ)

⎤
⎥⎥⎥⎦ , x ∈ I1,

�2(x, μ)=

⎡
⎢⎢⎣
[θ1, z1](x, μ) [θ2, z1](x, μ) [ψ1, z1](x, μ) [ψ2, z1](x, μ)
[θ1, z2](x, μ) [θ2, z2](x, μ) [ψ1, z2](x, μ) [ψ2, z2](x, μ)
[θ1, u1](x, μ) [θ2, u1](x, μ) [ψ1, u1](x, μ) [ψ2, u1](x, μ)
[θ1, u2](x, μ) [θ2, u2](x, μ) [ψ1, u2](x, μ) [ψ2, u2](x, μ)

⎤
⎥⎥⎦, x ∈ In+1.

and

A =

⎡
⎢⎢⎣

1 0 0 −α1
0 1 −α2 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
1 0 k1 0
0 1 0 k2

⎤
⎥⎥⎦.

�(μ) is called the characteristic function of L and it is known that the zeros of �(μ)
coincide with the eigenvalues of L (see [14]). Using Theorem 3.1 we obtain that�(μ)
is an entire function of μ of order≤ 1 and minimal type.

Following the same idea constructed in (4.17) one may obtain that the zeros of the
function

�(
)(μ) =
det

[ [θ1, z1](cn+1−)+
k1[θ1, u1](cn+1−) [θ2, z1](cn+1−)+
k1[θ2, u1](cn+1−)
[θ1, z2](cn+1−)+
k2[θ1, u2](cn+1−) [θ2, z2](cn+1−)+
k2[θ2, u2](cn+1−)

]

(4.18)
coincides with the eigenvalues of the real part L1 of the operator L . Further we can
infer that �(
)(μ) is an entire function of μ of order≤ 1 and minimal type.

5 Resolvent operator and Krein’s theorem

In this section we describe the inverse operator of L . Then we use Krein’s theorem to
get the complete spectral information for the operator L .

Let us consider the equation
Lϕ = a(x), (5.1)

where ϕ ∈ D(L), x ∈ I, a ∈ H such that

a(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a1(x), x ∈ I1
a2(x), x ∈ I2
...

an+1(x), x ∈ In+1

.
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One can handle the equation (5.1) with an equivalent Hamiltonian system

⎡
⎢⎢⎣

0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
ϕ[0]
ϕ[1]
ϕ[3]
ϕ[2]

⎤
⎥⎥⎦

(1)

−

⎡
⎢⎢⎣
−q0 0 0 0
0 −q1 1 0
0 1 0 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
ϕ[0]
ϕ[1]
ϕ[3]
ϕ[2]

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

a
0
0
0

⎤
⎥⎥⎦

or
J�(1) − Q� = W A (5.2)

and equivalent boundary value transmission conditions

[
1 0 −α1 0
0 1 0 −α2

]
�(c0+) = 0, (5.3)

�(cs−) =

⎡
⎢⎢⎣
γ1s 0 0 0
0 γ2s 0 0
0 0 γ4s 0
0 0 0 γ3s

⎤
⎥⎥⎦�(cs+), (5.4)

lim
x→cn+1−

[
1 0 k1 0
0 1 0 k2

]
Y t (x)J�(x) = 0, (5.5)

where s = 1, n, � is the associated vector of ϕ under (3.1),

� =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�1, x ∈ I1
�2, x ∈ I2
...

�n+1, x ∈ In+1

, Y =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Y1, x ∈ I1
Y2, x ∈ I2
...

Yn+1, x ∈ In+1

,

Yk = [Z1k, Z2k,U1k,U2k] , and Zmk and Umk (m = 1, 2, k = 1, n + 1) are the
associated vectors of zmk and umk, respectively, under (3.1).

Note that

Y t
1 JY1 = −J, Y t

2 JY2 = − 1
ϒ(1)

J, · · · , Y t
n+1 JYn+1 = − 1∏n

r=1 ϒ(r)
J. (5.6)

Using the method of variation of parameters and (5.6) one can write

�1 = Y1(x)
x∫

c0

JY t
1W1 A1dζ + Y1(x)D1, x ∈ I1,

�2 = ϒ(1)Y2(x)
x∫

c1

JY t
2W2 A2dζ + Y2(x)D2, x ∈ I2,

...

�n+1 =
n∏

r=1
ϒ(r)Yn+1(x)

x∫
cn

JY t
n+1Wn+1 An+1dζ + Yn+1(x)Dn+1, x ∈ In+1,

(5.7)
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where Dk (k = 1, n + 1) are constants and Wk and Ak are the parts of W and A,
respectively, on Ik . Using (5.7) and the conditions (5.3)-(5.5), the solution � of (5.2)
is found as

�(x) =
∫

I1

G(x, ζ )W (ζ )A(ζ )dζ + ϒ(1)
∫

I2

G(x, ζ )W (ζ )A(ζ )dζ

+...+
n∏

r=1

ϒ(r)

∫

In+1

G(x, ζ )W (ζ )A(ζ )dζ, (5.8)

where

G(x, ζ ) =
{−V(x)Ut (ζ ), c0 ≤ ζ ≤ x ≤ cn+1
−U(x)Vt (ζ ), c0 ≤ x ≤ ζ ≤ cn+1

and

V(x) = Y(x)
[

I
K

]
, U(x) = [U1,U2] , K =

[
k1 0
0 k2

]
,

I is the 2× 2 identity matrix.
We construct the kernel

G(x, ζ ) =
{−V t (ζ )U(x), c0 ≤ x ≤ ζ ≤ cn+1, x, ζ �= cm, m = 1, n
−V t (x)U(ζ ), c0 ≤ ζ ≤ x ≤ cn+1, x, ζ �= cm, m = 1, n

, (5.9)

where m = 1, n,

U(x) =
[

u1(x)
u2(x)

]
, Z(x) =

[
z1(x)
z2(x)

]
, K =

[
k1 0
0 k2

]
,

V(x) =
[
v1(x)
v2(x)

]
= Z(x)+ KU(x)

and

U(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

U1(x), x ∈ I1
U2(x), x ∈ I2
...

Un+1(x), x ∈ In+1

,V(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

V1(x), x ∈ I1
V2(x), x ∈ I2
...

Vn+1(x), x ∈ In+1

.

Therefore from (5.8) the solution ϕ of (5.1 ) is obtained as

ϕ(x)=
∫

I1

G(x, ζ )a(ζ )dζ+ϒ(1)
∫

I2

G(x, ζ )a(ζ )dζ+. . .+
n∏

r=1

ϒ(r)

∫

In+1

G(x, ζ )a(ζ )dζ

or
ϕ(x) = 〈G(x, ζ ), a(ζ )〉H .

123



2642 J Math Chem (2014) 52:2627–2644

For arbitrary a ∈ H we define the operator T as follows

T a = 〈G(x, ζ ), a(ζ )〉H . (5.10)

It is clear that T is the inverse operator of L and is a Hilbert–Schmidt operator in the
Hilbert space H. This implies that the root vectors of the operators T and L coincide.
Therefore the completeness of the system of all eigen- and associated vectors of T is
equivalent to the completeness of those for L . Now we shall remind Krein’s theorem.

Krein’s Theorem ([28], p. 238) Let K be a compact dissipative operator in H with
nuclear imaginary part �K . The system of all root vectors of K is complete in H so
long as at least one of the following two conditions is fulfilled:

lim
r→∞

n+(r,
K )
r = 0, lim

r→∞
n−(r,
K )

r = 0,

where n+(r,
K ) and n−(r,
K ) denote the number of characteristic values of the
real component 
K of K in the intervals [0, r ] and [−r, 0], respectively.

Following theorem will help us to use Krein’s theorem.

Theorem 5.1 [27] If an entire function h(μ) is of order ≤ 1 and minimal type, then

lim
ρ→∞

n+(ρ, h)

ρ
= lim
ρ→∞

n−(ρ, h)

ρ
= 0,

where n+(ρ, h) and n−(ρ, h) denote the number of the zeros of the function h(μ) in
the intervals [0, ρ] and [−ρ, 0], respectively.

We can write the operator T as the sum of two operators. In fact, since km =

km + i�km, m = 1, 2, one can derive from (5.9) and (5.10) that T = T1 + iT2,

where
T1a = 〈G1(x, ζ ), a(ζ )〉H , T2a = 〈G2(x, ζ ), a(ζ )〉H ,

and

G1(x, ζ )=
{− [Z(ζ )+
KU(ζ )]t U(x), c0 ≤ x ≤ ζ ≤cn+1, x, ζ �= cm, m=1, n
− [Z(x)+
KU(x)]t U(ζ ), c0 ≤ ζ ≤ x≤cn+1, x, ζ �= cm, m=1, n

,

G2(x, ζ ) = − [�KU(ζ )]t U(x).

T1 is a selfadjoint Hilbert–Schmidt operator and T2 is a selfadjoint rank-two operator.
Moreover a direct calculation shows that 〈T2a, a〉H ≤ 0. It is not so hard to see that
T1 is the inverse of the real part L1 of the operator L .

Consider the operator −T, −T = −T1 − iT2. Note that −T is dissipative in H.
The characteristic values of the operator −T1 coincide with the eigenvalues of the
operator L1. Therefore using (4.18), Theorem 5.1 and Krein’s Theorem we arrive at
the following results.

Theorem 5.2 All root vectors of the operator−T (also T ) span the Hilbert space H.
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Therefore from all the obtained results throughout the paper we can introduce the
following theorem.

Theorem 5.3 The spectrum of the BVTP (4.1)–(4.6) consist of purely discrete eigen-
values with finite multiplicity and belong to the open upper half-plane. The system of
all eigen- and associated functions of the BVTP (4.1)–(4.6) span the Hilbert space H.

6 Conclusion

In this paper we have considered a fourth order differential equation defined on multi-
interval in lim-4 case subject to the boundary value transmission conditions. To inves-
tigate this problem we have obtained some identities and results about the growth of
the entire functions. Moreover we have described a suitable Hilbert space with a spe-
cial inner product. Then we have proved that corresponding operator associated with
the problem is dissipative in this Hilbert space. To get the complete spectral properties
of this dissipative operator we have used Krein’s theorem. Hence we have passed to
the inverse operator with explicit form. Finally we have proved that all eigen- and
associated vectors of this operator (problem) span the Hilbert space.

To be more precise we shall give an example.
Let us consider the following fourth order differential equation

ϕ(4) − a(xαϕ(1))(1) + bxβϕ = μϕ, I ⊂ (1,∞). (6.1)

Devinatz [21] proved that for β = 2α, α > 2
3 and a± (a2 − 4b)

1
2 < 0, (6.1) has four

linearly independent solutions belonging to L2(I ). Then we arrive at all eigenvalues
of the problem (6.1), (4.2)–(4.6) belong to the open upper halp-plane and they are
purely discrete. Further all eigen- and associated functions of this problem span the
Hilbert space.
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